
conductivity of the circuit; T, oscillation period; m, volume per fraction of the second com- 
ponent in unit volume of the medium. 
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THEORY OF INTERFACIAL CONVECTION 

Yu. A. Buevich UDC 532.7:536.25~ 

Using a simple thermocapillary convection problem as an example, we consider weak- 
ly nonlinear convective structures which arise near the surface of two liquids as 
a result of the Marangoni instability. 

In the so-called Marangoni instability (a brief historical review is in [i]), near the 
surface between two immiscible liquids interesting stationary motion can develop. In some 
cases the motion is characterized by a high degree of order and there is a completely regular 
circulatory flow inside separate convection rolling cells which form a coherent structure (in- 
terfacial convection). In other cases the motion resembles random fluctuations in a turbu- 
lent fluid (interfacial turbulence). The different types of motion near the surface were ob- 
served in [2-6]; they can also be considered as dissipative structures developing in a non- 
equilibrium system [7, 8] or as a consequence of the randomizing behavior of dynamical sys- 
tems with strange attractors [8, 9]. 

The presence of interfacial convection or turbulence leads to a significant increase in 
mass or heat transport across the surface (see [i0, ii]) and is therefore of great interest. 
Physically, the Marangoni instability is most often due to the dependence of the surface ten- 
sion on temperature or concentration of surface-active or inactive material (thermocapillary 
or concentration-capillary convection), but may also be caused by a dependence of the sur- 
face tension on the density of surface electric charges or dipoles, the polarization of the 
surface layer in an external electromagnetic field, the conformational structure of the sur- 
face layer, and so on (see [12]). 

The theoretical studies in this field are almost entirely devoted to the linear analysis 
of the conditions for the onset of the Marangoni instability (representative examples can be 
found in [13-19]). Attempts to extend the analysis to nonlinear effects are rare [20-22], 
and except for numerical investigations, are limited to weakly nonlinear problems of inter- 
facial convection. The method used in the present paper is essentially a variant of the 
small parameter method, applied previously to natural thermal convection in [23] and consid- 
ered in detail in [24]. It is quite similar to the method of Lin [22, 25] and is based on 
the old classical works of Stuart and Watson [26, 27] on the nonlinear stability of plane 
Poiseuille and Couette flow. A similar method was applied to nonlinear instabilities and to 
the formation of space-time structures in thin liquid films deposited on substrates [28-30]. 

In essence, the method goes back to the well-known hypotheses of Landau [31] and Hopf 
[32] that the transition to turbulent motion can be thought of as a series of supercritical 
bifurcations of the set of periodic (or quasiperiodic) solutions of the Navier--Stokes equa- 
tions describing the loss of stability in the analogous set of higher dimensionality, and on 
the possibility of stabilizing these solutions for not very large supercriticalities due to 
nonlinear interactions (the possibility of establishing regular periodic secondary flow under 
certain conditions). Although prior to the onset of natural turbulence, this hypothesis was 
shown to be untrue [33], it is correct in many other cases, in particular for interfacial 
convection. 

A. M. Gor'kii Urals State University, Sverdlovsk. Translated from Inzhenerno-Fiziche- 
skii Zhurnal, Vol. 48, No. 2, pp. 230-239, February, 1985. Original article submitted 
November 23, 1983. 
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Below our method is illustrated on a plane thermocapillary convection problem. In this 
case the nonlinearities in the Navier--Stokes equation and heat-conduction equation and also 
nonlinearities from distortion of the surface and the dependence of the surface tension on 
the temperature of the surface can be significant in stabilizing finite perturbations. The 
analysis of the dynamics of nonlinear perturbations leads to very lengthy and complicated 
calculations such that the basic ideas of the method and the physics of the problem can easi- 
ly be hidden in a mass of details. In order to avoid this, we consider only the simplest 
situation, when the only important nonlinearity in the problem is the dependence of the sur- 
face tension on temperature. This corresponds to the assumption that the Reynolds and Peclet 
numbers, characterizing steady convective motion and its effect on heat transport, are small, 
and the surface is practically undeformable (the surface tension is large). We simplify the 
problem further by ignoring the temperature dependence of the densities, specificheats, vis- 
cosities, and thermal conductivities of both liquids, and consider only plane flow. Then in 
both liquids we can introduce the stream function (such that vx=a~/a~ Vz=--o~/ax), and com- 
pletely ignore the usual Taylor instability of the surface in an external gravitational field. 

The unperturbed state is assumed to be a double-layer of two immiscible liquids at rest, 
occupying the half-spaces z < 0 and z > 0 (regions I and 2, respectively), in which there is 
heat transport normal to the plane of the surface (z = 0) so that we have a nonequilibrium 
system. The unperturbed temperature field is given by 

�9 ~ ) .=  x~o-- gjz, ] = 1, 2, (I) 

and from the condition that the heat flux be continuous, it follows that 

%1~i = ~ z .  (2 )  

The linearized equations for the stream function in the two regions, corresponding to 
the approximation of overdamped motion, and the appropriate boundary conditions have the form 

(vA - -  O/Ot) A@ = 0, @-+ 0, z - +  • oo, 

0~1 0~2 = O, 0~1 0~2 
Ox Ox Oz Oz 

_ ( 2 )  ~ )  ~ Oz~ O x  ~. - -  ~ Oz ~ Ox ~ ] 
UX Z -- : . 

Off 
Ox ' z----O, 

(3) 

where the last equation describes the balance of the tangential components of momentum on the 
surface (where there is no danger of misunderstanding, the subscripts j = I, 2 denoting liq- 
uids i and 2, are omitted). 

The equations of heat conduction for a temperature perturbation r, linearized for the 
case of small Peclet number, and the appropriate boundary conditions have the form 

O ~ / O t  - -  f i v z  = x A ~ ,  �9 ~ O, z - +  -4=_ o o ,  

% = ~2, qt = --~10x---L-~ 0% (4)  
Oz = q2 = - -  ~ ' - - - ~ z  ' z = O. 

Equations (4) will be valid in the case where the temperature gradients Bj are large, 
so that in each half-space the quantity I BVzl is much larger than IvVX I , whic~ is assumed 
small. It is not difficult to show that this implies that the following inequality is satis- 
fied: 

0 i n  b o t h  r e g i o n s ,  w h e r e  L a n d  T s a r e  t h e  l i n e a r  d i m e n s i o n  o f  t h e  s t e a d y  c o n v e c t i o n  c e l l s  a n d  
t h e  c h a r a c t e r i s t i c  t e m p e r a t u r e  p e r t u r b a t i o n  on t h e  s u r f a c e ,  r e s p e c t i v e l y .  

We a s s u m e  a n o n l i n e a r  r e l a t i o n  b e t w e e n  t h e  s u r f a c e  t e n s i o n  and  s u r f a c e  t e m p e r a t u r e  i n  
t h e  f o r m  

~ ( ~ o  + "~) = ~ - - a T ~  + ~ + c ~  + . . . .  '~ = ~ ('~o), % = "~I~o, (6 )  

and the coefficients a, b, c, ... can be easily expressed in terms of derivatives of ~ with 
respect to Tso , and are considered to be known. 
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We consider below only weakly nonlinear periodic convective flow. The periodic func- 
tions describing the flow will be nearly harmonic. We therefore assume that these periodic 
functions can be written is the sum of the principal harmonic and a series of higher harmon- 
ics with coefficients that decrease with the degree of the harmonic. For example, the stream 
function is written as 

tF* e-~nO~ = e ~ o  + ~ e~ (tlJ'e ~'~~ + ~ ~, 

n =  l 

0 = e~ot - -  kx ,  1F1 = ~ io  + enYl2 + �9 �9 �9 

(7) 

where ~n are functions of z only, the wavenumber k is real, and the parameter e is introduced 
only to help identify terms of various orders in the amplitude of the principal harmonic; in 
the final results e will be set equal to unity. We simplify the calculation further by assum- 
ing in (7) that m is small quantity of the order of the amplitude of the principal harmonic 
squared. Although the loss of stability in systems of this kind usually occurs with respect 
to zero-frequency perturbations, the frequency of stationary space-time structures estab- 
lished as a result of the instability is not always small. Therefore, the condition t h a t  the 
complex frequency be small must be verified a posteriori. The representation (7) can also 
be written for the other variables; the coefficients in the series will be denoted by corre- 
sponding capital latters. Below we will consider only the harmonics n = 0, I, 2. 

Substitution of (7) into (3) leads to the equations 

A2T10 ----- 0, d4~o/dz  ~ ---- O, A~F2 = O, 

A ~ a z  = i (co/v) AxlFlo, A n = d2/dz ~ -- n2k ~ 
(8) 

with boundary conditions following from (3). Using the condition at infinity and the vanish- 
ing of the normal component of the velocity on the surface, the coefficients in (7) for the 
velocity components v x and v z take the following form in the half-space z > 0: 

Vox = Voz = O, V~ox = B (t - -  kz) e -~z,  Vlo z = ikBze -kz ,  

Vzx -~ B" (1 -- 2kz) e -2hz, V2z = 2 ikB ' ze  -2kz,  

VI~_ io B z ( 2 _ _ k z )  e_k~ ' V12z= o Bz2e_kZ, 
4k~ 4~ 

(9) 

where B and B' are constants of integration. The arbitrary constant appearing when the equa- 
tion for P,2 in (8) is integrated is chosen so that the term proportional to z vanishes in 
the expression for ~2. 

The coefficients of the temperature perturbation in the form (7) follow from (4): 

•  = - - ~ V 1 0 z ,  d2To/dz~ = O, 

uA~T2 = - -  ~V2z, u h l T n  = - -  ~V12z + i~Tlo,  

and t h e  b o u n d a r y  c o n d i t i o n s  h a v e  t h e  same f o r m  a s  i n  ( 4 ) .  S o l v i n g  (10)  i n  t h e  h a l f - s p a c e  
z > 0 and  u s i n g  t h e  c o n d i t i o n  a t  i n f i n i t y ,  we h a v e  

(lO) 

T o = 0 ,  T l o = A e  - ~ +  i ~ B z ( l + k z )  e -hz,  
4k  • 

i ~ B ' z ( 1  + 2kz) e -2k~, (11)  T~ = A'e  -2hz + 8--~ - ~  

- -  2k---~ 8k3• ~ ( l + k z ) +  3• J e - k L  

where A and A' are new constants of integration. In the solution of the equation for Tx2 in 
(i0), the arbitrary constant is chosen to cancel terms not involving powers of z. 
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Relations for the half-space z < 0 (region I) corresponding to (9) and (II) can be ob- 
tained from the above equations by simultaneously changing the sign of i, k, and m. 

Below we will need the values of the coefficients U n = Vnx, E n, Tsn, and Qn for the tan- 
gential velocity and stress, temperature, and heat flux at the surface in both directions. We 
obtain from (9) 

U~ il = E~ i l = O, U?~ = BI, U~ ~ = B}, ~ ~e'r(i) = O, 

E?d = (--  1/-~ 2k~B~, Eg)= (--  1) i - '  4k~B;, (12) 

y(i) :~ = (--  1)/-~ (Ropfl2k) B~, ] = I, 2, 

and from (ii) 

.,.u~ Aj, T( f )=A~,  T (i) O, T~'o ) = Q ~ ~  = o ,  ~ o  = ~ ~ = 

Q(o ipjCj~j 1o = (-- I) i k~.jAj Bj, 
4k 

Q~> = (--  1) j 2kL:A; ipjCj~ B~, 
8k 

Q([)= o~p~Ci2k [(- -1) , iA~ 4k ~151 ( @ + @ v / ) B ~ ] ,  , =1,2 

(13) 

In (12) and (13) the subscripts indicate the region to which the expression refers. 

The unknown constants Aj, B.. and A'., Bj are determined from the remaining boundary con- 
ditions in (3) and (4). We use ~he Fourier expansion (7) for all quantities in the boundary 
conditions and write separate relations for each harmonic. The continuity conditions of the 
tangential components of the velocity and the temperature give 

A : = A 2 = A ,  B ~ = - B 2 = B ,  A ~ = A ~ = A ' ,  B ~ = B ' 2 = B ' .  (14) 

From the balance of the tangential components of the momentum and the heat flux on the 
surface in (3) and (4), we obtain the following relations with the help of (6) and (12) 
through (14). For the first harmonic we have 

[ 2 (~1 q- bt~) -t- e~" ic~ ] 4ki (p~ + p~) B = i{aA--e~[b(AA'*+A*A')+3cA~A*]}, 

4-k~ " p~C~151 -- p~C~I3,~ -- ~ ir 2k ~ p l C l l ~ :  - -  - -  (15) • 2v: 

(' ')If [ '~ ] - p.C~#. ~--[ + ~ B = ~ + ~ + .~-~-(p~CI + p~C~, A, 

and for the second 

The system of equations 

2 (~1 + ~2) B' = aA' - -  bA ~, 

i 
- -  - -  (P~C1131 - -  P~C~) S' = 2 (~1 + ~) A'. 

8k ~ 

(16) determines A' and B' as functions of A. In particular 

(16) 

where 

A' = br(ar + 4isk ~) A~ ' (17)  
aZr 2 "F 16s2 k ~ 

Substituting (17) into 
and B with coefficients dependent on the amplitude squared ~ = AA*. 
tion of the system (to order E 2) has the form 

r = p:C:~: - -  p2C~;  s = 8 (L1 + L2) (~: + ~ ) .  ( 1 8 )  

(15), we obtain a system of linear, homogeneous equations for A 
The characteristic equa- 
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[ 2b~r (ar + 4isk ~) 3c] 8, 
(19> 

where 

a 1 , = = [,.c.,. ( �88 § 

S = (p, + p~) (X~ + ~.,) + 4 (p,C~ + p,C.) (l~, + ~t~). 

(20) 

Letting ~ =-~-- iy, where ~ and y are real, and putting ~ = I, we obtain from (19) 

~, = v' ( k ) +  v'(k)8,  ~ - -  ff'(k) 8, 

?' (k) = k~ a r -  sk~- ? " ( k )  = rk2 [ 2aMr~ +3c] 
R + Sk  ~ ' R + Sk2 a*r ~- + 16s=k ~ ' 

8b*r2sk~ 
(k) = (R + S k  ~) (aO'r ~- + 16 s=k ~) ' 

(21) 

where r, s, R, S are given in (18) and (20). 

The linear stability theory corresponds to ~ = 0 in (19) and (21). In particular, when 
R + Sk 2 > 0, the states of neutral stability are determined by the equation ar = sk 2, and 
since we always have s > 0 and usually have a > 0, we must have r > 0 in order to have an in- 
stability. (When R < 0, the equation R + Sk 2 = 0 also has a positive root, but since we as- 
sumed that m was small, we cannot consider values of k close to this root using the relations 
obtained here.) 

If the unperturbed state is unstable, and stationary nearly harmonic convective flow is 
established with characteristic linear dimension k,-* and amplitude 6,*/2, the growth factor 
of the perturbation y must go to zero when k = k, and 6 = 6,. Also this zero value must cor- 
respond to the maximum value of y, considered as a function of k at ~ = const (for a detailed 
discussion of this, see [29, 30]). Hence we obtain from (21) the following system of equa- 
tions for the unknown k, and 5,: 

_ _  O~ = (k,) ?' (k,) + ?" (k,) 6,  : O, 07' (k,) + _ _  8, = O, (22)  
ak, Ok, 

and the value of y corresponding to the roots k, and 6, of this system must be a maximum, in 
the sense discussed above. 

If the system (22) has positive roots which satisfy the maximum condition on y, then the 
loss of stability is "soft." In this case, an ordered, stationary, Deriodic interfacial con- 
vection regime can be established near the surface with a definite frequency and with con- 
vective cells of a definite linear dimension. This regime is evidently stable against small 
plane perturbations with arbitrary k and ~. Such perturbations can be considered as weak 
modulations imposed externally on the unperturbed system [24], whose amplitude is too small 
to change the stability characteristics of the system. (However, this regime is not always 
stable against spatial perturbations; for certain values of the parameters it can be re- 
placed by a stable spatial regime with a coherent structure of three-dimensional cells, rather 
than two-dimensional ones. A similar situation is observed when the plane waves are re- 
placed by spatial waves in a thin liquid film [30]). For known values of k, and 6,, it is 
not difficult to determine the vibrational freouencies ~, = ~"(k,)~, for the plane thermo- 
capillary motion considered here, and the amplitudes of all of the variables can be deter- 
mined. The theory will be approximately correct only under the condition that the amplitude 
of the second harmonic be much smaller than the amplitude of the principal harmonic and that 
the Reynolds and Peclet numbers be small in comparison to unity. In addition, the inequality 
(5) must be satisfied and the vibrational frequency ~, must be much smaller than the charac- 
teristic inverse times ~jk~ and • of oropagation of momentum and heat over a distance of 
order k, -x . 

If the system (22) does not have real positive roots satisfying the maximum condition on 
y, an ordered convective regime of the kind considered above cannot occur. This means that 
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the nonlinear dependence (6) cannot by itself stabilize the system against increasing pertur- 
bations, and the latter will amplify, unless other nonlinearities not considered here stabil- 
ize the system. If this does not occur for finite, small-amplitude perturbations, the insta- 
bility leads to vibrations with various values of k and a. This corresponds to a "rigid" 
loss of stability and interfacial turbulence. 

The number of parameters affecting the characteristics of thermocapillarv convection is 
large, so that a detailed analysis of even the simple problem considered here would be very 
difficult and may be the subject of a separate paper. Here we consider as an example two 
special cases: i) the liquids are such that R = 0; and 2) the quantity k, satisfies the con- 
dition k 2 . < < R / S  . In both of these cases we take for simplicity c = 0; this corresponds to 
approximating the function (6) by a second degree polynomial. 

In both cases, Eq. (22) reduces to the same form 

(ar - -  sk~} (a2r ~- + 16s~k. 4) - -  2ab~r38, = O, 

Se 4~ s (a~r ~- + 16 k.)- - -  64ab~r3s~k~.6, = 0 
(23) 

(we assume that k. 5~0) �9 Eliminating 6,, we obtain the equation 

3 s k. + ---- 0. (24) 

This equation has two positive roots, and the following root gives the maximum y: 

(25) 

From (23) and (25) we have 

6, _ (1 + 16p~)~ ~-~ 1.360 
64 p 

F i n a l l y ,  f rom (21)  and ( 2 5 ) ,  ( 2 6 ) ,  we h a v e  i n  t h e  f i r s t  c a s e  (R = 0) 

(26) 

~ ,  1 + 16p2 ar ar 
= , ~ 0 . 9 2 8 - -  (27)  

8 S S 

k 2 and in the second case (.<<R/S) 

1 + 16p2 a2r2 a~r~-. 
~* -= P 8 s--R ~ 0.588 s"--R'- (28)  

The ratio of the amplitudes of the second and first harmonics of the temperature pertur- 
bation is characterized by ArA'*/AN *-= 1/64p~0.025 , so that this regime is in fact almost har- 
monic. The condition (5) leads to the inequality aS/b~<< ~js/r, and the requirement that the 
Reynolds and Peclet numbers be small in comparison to unity Rives aS/b~<< %2(~ I + ~)r, where X 
stands for any of the quantities wJ' • (J i~2 i, 2). Here as a characteristic velocity we take 
(see (15)) the quantity (BB*)I/2.-,a(bt1+~)8.J ~ , and as a characteristic temperature 
(AA*)I/2 = 6 I/2, The linear dimension is k, i and we used relations (25~, . and (26). For fi- 
nite b and r it is clear that all the inequalities can be satisfied if a is sufficiently 
small and the temperature gradient Bj is sufficiently large. 

Finally, to simplify the calculations, it has been assumed that ~ is small. This as- 
sumption implies that ~,<<%k~, which reduces to s/S<<% in the first case mentioned above, 
and to at~R<<% in the second, where we have used (27) and (28) for ~, and (25) for k,. From 
the definitions of s and S in (18) and (20) it follows that in the first case these inequali- 
ties cannot be satisfied simultaneously (for all X) and in general we must consider s/S ~ X- 
Therefore, the assumption that m is small, which was essential to our calculation, in this 
case is not true. Nevertheless, it can be shown that our results correctly describe the na- 
ture of the dependence of k,, ~,, and ~, on the physical parameters and are correct as order 

168 



of magnitude estimates. In the second case the inequality ar/R<<x, and also the inequality 
ar/R<<s/S, is equivalent to the condition k~<<R/S , which can be satisfied for small enough 
r. It is clear from our simplified analysis, however, that in a more complete theory the as- 
sumption that the frequency of thermocapillary flow is small should be rejected. 

Since the Peclet number was assumed to be small, the convective motion considered here 
cannot lead to a significant increase in heat transport across the surface. But mass trans- 
port can significantly increase as a result of the convective motion if the Schmidt number 
is large, as is usually the case for diffusion in liquids. 

NOTATION 

A, A', B, B', integration constants; a, b, c, coefficients in the expansion (6); C, spe- 
cific heat capacity; k, wave number; p, numerical constant in (25); r, s and R, S, parameters 
in (18) and (20); t, time; v, velocity; x, z, tangential and normal coordinates; 8, tempera- 
ture gradient; y, perturbation growth factor; 6, amplitude of the principal harmonic of tem- 
perature vibrations squared; e, small parameter; • ~ , thermal diffusivity and thermal con- 
ductivity; ~, v, dynamic and kinematic viscosity; p, density; ~, surface tension; T, tempera- 
ture; ~, stream function; m, ~, complex and real frequencies; subscripts j = I, 2 refer to 
the two liquids, an asterisk subscript refers to stationary convection, capital letters de- 
note the coefficients in the Fourier expansions for quantities denoted by corresponding lower 
case letters, an asterisk superscript means the complex conjugate. 
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